How can Machine Learning algorithms be used to develop innovative climate service products?

Peter Hoffmann
Laurens Bouwer, Christine Nam, Susanne Pfeifer,
Diana Rechid, Vanessa Reinhart,
Daniela Jacob
Climate Service Center Germany (GERICS)

GERICS offers in a scientifically sound manner products, advisory services and decision-relevant information in order to support government, administration and business in their efforts to adapt to climate change.
GERICS: Product development

with need for adaptation

tailored for user requirements
Example: Climate Fact Sheets

Concise climate characteristics of individual countries or regions

Current climate

- General mean values taken from literature and available observations
- Major climate zones (see climate diagrams: C21, 3)
- Geographical setting

Historical climate trends

- Observed warming
- Projected changes in mean temperature
- Increased precipitation
- Decreased snowfall

Summary of projected future climate

- The major patterns of climate change are expected to continue in the next 50 years
- Increased temperature and precipitation
- Decreased snowfall

Available on request:

www.climate-service-center.de/climate-fact-sheets

Example-pages from CFS: Burkina Faso – Togo – Ghana
Data & data analysis

Climate model data:
- Period 1950 to 2100, different emission scenarios
- >70 global climate model simulations (CMIP3/CMIP5)
- >50 regional climate model simulations for Europe

Data size:
- RCMs for globe (CORDEX-CORE):
 - ~1.5 PB in total for one regional climate model
 - ~1.5 TB for one climate variable (e.g. 2m Temp)
Data & data analysis

Data analysis:

- Statistical tools from standard (e.g. regression, sig. test) to more complex methods (e.g. cluster analysis)
 - Quicker methods & detection of extremes
 - Computation of complex indices (e.g. drought indices)
 - Improved indices for sectoral prediction of vulnerability
- Future development: sectorial models using additional datasets (e.g. flood risk models, biol. models)
 - Taking advantage of new large datasets
 - Going beyond to physical data & modeling
Example: ML in climate service for flood risk modeling

Aim:
- Compute damage function from storm surges

Opportunities:
- Using a range of additional datasets
- Possible new scientific insight

Going from:
Damage Function = f(water depth)

DF = f(water depth, warning time, waves height, …..)

Aim:
- Compute damage function from storm surges

Opportunities:
- Using a range of additional datasets
- Possible new scientific insight
Challenges: Sample Bias Problem

3-minute gust speeds in Typhoon Haiyan versus other cyclones (Philippines)

From: Wagenaar et al. resubmitted, Risk Analysis

Source: NASA
Example: ML in climate service for health

Aim:
- Impact of future heatwaves on human health

Opportunities:
- Large amount of data from different sources available

Challenges:
- Complex interactions between health, society, environment and climate
 - What are appropriate ML tools to tackle this problem?
 - Quality of the different datasets needs to be tested!
 - New workflow for data provision and analysis

Exploring ML methods in joint project of GERICS and Helmholtz Zentrum München (HMGU)

DIGITAL EARTH
Summary: Opportunities, Challenges and Risks for climate services

Opportunities
- Exploiting large climate model and sectoral datasets
- Integration of physical climate data with socio-economic data
- New innovative products using ML in addition to existing “standard” methods
- New scientific insights possible

Challenges
- Quality of heterogeneous input data from different sources
- Quality assessment of products based on ML methods
- Incorporate appropriate ML method in established workflow

Risks
- Incorrect use of ML methods might degrade products

need for transdisciplinary collaboration, e.g. climate science, data science, health etc.